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Abstract—Recently, increasingly attention has been paid to
data reduction in high-performance computing (HPC) environ-
ments where continually produce a large volume of data every
second during scientific simulations. Unlike the traditional data
reduction techniques (such as deduplication or lossless compres-
sion), error-controlled lossy compression not only significantly
reduces data size, but also can hold the promise to satisfy user’s
requirements on error control. Point-wise relative error bounds
(i.e., compression errors depends on the data values) are widely
used by many scientific applications in the lossy compression,
since error control can adapt to the precision in the dataset
automatically. SZ lossy compressor has been one of the best
choices for HPC data reduction due to its high compression
ratios while meeting data precision requirements. Currently, high
compression rate is also strongly demanded because of fairly high
data production rate of many applications. In this work, we aim
to accelerate the SZ compressor significantly by developing a
parallel model in terms of the point-wise relative error bound,
because this type of error bound has been widely used in the
community while SZ suffers relatively low compression/decom-
pression rate in this case. It is non-trivial to parallelize SZ because
of strong data dependency in the SZ compression. To address
this issue, we develop a pipeline-like method and exploit a series
of strategies to parallelize the logarithmic transformation and
prediction + quantization stages for SZ. We develop a parallel
computing framework, called ParaSZ, that efficiently exploits
parallelism of SZ compression in logarithmic transformation
stage as well as prediction and quantization stage. Our evaluation
with real-world scientific simulation datasets suggest that ParaSZ
greatly accelerates the computation tasks of SZ in most cases
while without sacrificing the compression ratio.

Index Terms—Lossy compression, high-performance comput-
ing, scientific data, compression rate

I. INTRODUCTION

Scientific simulations in high-performance computing
(HPC) environments are producing vast volume of data, which
may consume huge storage space and cause severe I/O bottle-
necks during the simulation [1]–[3]. For instance, there are 260
TB of data generated across one ensemble every 16 seconds,
when estimating even one ensemble member per simulated day
[4]. The data volume and data movement rate are imposing
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unprecedented pressure on storage and interconnects [5], [6]
in HPC environments.

As HPC storage infrastructure is being pushed to the scala-
bility limits in terms of both throughput and capacity [7], the
communities are striving to find new approaches to lower the
storage cost. Data reduction, among others, is deemed to be a
promising candidate by reducing the amount of data moved to
storage systems. Data deduplication and lossless compression
have been widely used in general-purpose systems to reduce
data redundancy. In particular, deduplication [8] eliminates
redundant data at the file or chunk level, which can result in
a high reduction ratio if there are a large number of identical
chunks at the granularity of tens of kilobytes. For scientific
data, this rarely occurs. It was reported that deduplication
typically reduces dataset size by only 20% to 30% [9], which
is far from being useful in production. On the other hand,
lossless compression in HPC was designed to reduce the stor-
age footprint of applications, primarily for checkpoint/restart.
Shannon entropy [10] provides a theoretical upper limit on
the data compressibility. But simulation data often exhibits
high entropy, which results in low lossless compression ratio
(usually less than 2.0) on HPC datasets [11]. With growing
disparity between compute and I/O, more aggressive data
reduction schemes are needed to further reduce data by an
order of magnitude or more [4], so the focus has shifted
towards lossy compression recently.

Recently, lossy compression for HPC datasets has been
widely used and studied [12], [13]. For example, ZFP and SZ
have been widely recognized as the top two error-controlled
lossy compressors with respect to both compression ratio and
rate [13]–[16]. In general, SZ has higher compression ratio
than ZFP with the same data distortion, while suffering from
lower compression rate in many cases.

In this paper, we mainly focus on how to accelerate the
compression rate for relative-error bounded lossy compression
in terms of SZ [17], by developing a parallel processing model
without sacrificing the compression ratio. But it is non-trivial
to parallelize SZ because of strong data dependency during
the process of SZ compression. Specifically, SZ involves four



important stages: data prediction, linear-scaling quantization,
Huffman encoding, and lossless compression. The stages 1 and
2 are often the performance bottleneck, while they have strong
data dependency during the data processing. For instance, the
prediction of one data value is dependent on several other
precursory data points.

In our solution, we design an efficient parallel compression
model in terms of a critical characteristic in the SZ com-
pression principle. Specifically, we observe that in SZ, the
multi-dimensional prediction of a data value depends only on
a few neighboring data points instead of on the entire dataset.
Such an observation motivates us to develop a pipeline-like
method to accelerate the data compression. Our evaluation
with real-world scientific simulation datasets suggest that
ParaSZ efficiently accelerates the computation tasks of SZ in
most cases while without sacrificing the compression ratio.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work. In Section III, we
discuss details about problems and challenges. In Section
IV, we present the design and implement of our approach.
In Section V, we evaluate our new scheme with multiple
real-world scientific HPC application datasets across different
domains, comparing our scheme with the latest SZ. The break-
down of time cost will also be provided to show the reduction
of time in different stages. In Section VI, we conclude our
work, and discuss the future work in this research domain.

II. RELATED WORK

Lossless compression fully maintains data fidelity, but it
depends on the repetition of symbols in the data sources.
Even for slightly variant floating-point values, their binary
representations may hardly contain identical symbols (or ex-
actly duplicated chunks). As such, lossless compression suffers
from very low compression ratio [2], [9], [13], [17], [18] on
scientific data. Error-bounded lossy compression creates a new
avenue to drastically improve data compression ratio, while
still satisfying user-requirement on data distortion.

ZFP [18] follows the classic texture compression for image
data. Working in 4d (where d is the number of dimensions)
sized blocks, ZFP first aligns the floating-point data points
within each block to a common exponent and encodes ex-
ponents. Then, a reversible orthogonal block transform (e.g.,
discrete cosine transform) is applied to the signed integers in
each block. Such a transform is carefully designed to mitigate
the spatial correlation between data points, with the intent
of generating near-zero coefficients that can be compressed
efficiently. Finally, embedded coding [19] is used to encode
the coefficients, producing a stream of bits that is roughly
ordered by their impact significance on error, and the stream
can be truncated to satisfy any user-specified error bound.

Motivated by the reduction potential of spline functions
[20], [21], ISABELA [22] uses B-spline based curve-fitting to
compress the incompressible scientific data. Intuitively fitting
a monotonic curve can provide a model that is more accurate
than fitting random data. Based on this, ISABELA first sorts
data to convert highly irregular data to a monotonic curve. Its

biggest weakness is pretty slow compression/decompression
because of its expensive sorting operation.

SZ compressor has experienced multiple revolutions since
the very first version 0.1 [23] was released in 2016. SZ
0.1 employed multiple curve-fitting models to compress data
streams, with the goal of accurately approximating the original
data. SZ 0.1 encoded the bestfit curve-fitting type for each
data point or mark the data point as unpredictable data if
its value is too far away from any curve-fitted value. SZ
1.4 [2], [24] significantly enhanced the compression ratios by
improving the prediction accuracy with a multi-dimensional
prediction method plus a linear-scaling quantization method.
SZ 2.0 [25] further improved the compression quality for
the high-compression cases by leveraging an adaptive method
facilitated with two main candidate predictors (Lorenzo and
linear regression). Note that the classic SZ framework [2] did
not support point-wise relative error bound. As such, Liang
et al. [17] proposed an efficient logarithmic transformation
to convert the pointwise relative-error-bounded compression
problem to an absolute-error-bounded compression problem.
However, as we have confirmed in our performance profiling,
this will significantly slow down the compression and de-
compression because of its costly logarithmic transformation
operations. SZ 2.1 [26] developed a technology to avoid the
time cost in the transform stage by building pre-computed
table and combining the quantization stage with the trans-
form stage. And now, the workflow of SZ compressor is
described as follow. Firstly, using an efficient logarithmic
transformation to convert the point-wise relative-error-bounded
compression problem to an absolute-error-bounded floating-
point data compression problem, which is further converted a
lossless integer data compression problem by prediction and
quantization method. And then, through huffman encoding
and other lossless compressors, like ZStandard [27] (or called
Zstd) and GZip [28]. Thus, SZ finally achieves the highest
compression ratio from among all lossy compressors.

ZFP and SZ have been widely recognized as the top
two error-controlled lossy compressors with respect to both
compression ratio and rate [13]–[16]. They have been adopted
on thousands of computing nodes. For example, the Adaptable
IO System (ADIOS) [29] deployed on the Titan (OLCF-
3) supercomputer at Oak Ridge National Laboratory has
integrated both ZFP and SZ for data compression. Although
being the two best compressors in class, ZFP and SZ still have
their own pros and cons because of distinct design principles.
Motivated by fixed-rate encoding and random access, ZFP fol-
lows the principle of classic transform-based compression for
image data. SZ adopts a prediction-based compression model,
which involves four key steps: data prediction, linear-scaling
quantization, Huffman encoding and lossless compression. In
general, SZ outperforms ZFP in compression ratio (about 2X
or more), but SZ is often 20-30% slower than ZFP [13],
bringing up a dilemma for users to choose an appropriate
compressor in between. In fact, the compression/decompres-
sion rate is the same important as the compression ratio, in
that many of applications particularly require fast compression
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Fig. 1. Workflow of SZ Compressor with log transform.
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Fig. 2. Compression ratios of sub-block-based method (64 × 64 × 64) and
conventional SZ methods on NYX dataset with 1E-4 point-wise relative error
bound.

at runtime because of extremely fast data production rate
such as the X-ray analysis data generated by APS/LCLS
[30], [31]. A straight-forward question is can we significantly
improve the compression and decompression rates based on
SZ lossy compression framework, leading to an optimal lossy
compressor for users.

There are also some existing studies working on combining
different lossy compressors to obtain better compression qual-
ity. Lu et al. [13] conducted a comprehensive evaluation based
on SZ and ZFP, and proposed a simple sampling method to
select the best compressor with higher compression ratio in
between. Tao et al. [15] proposed an efficient online, low-cost
selection algorithm that can predict the compression quality
accurately for SZ and ZFP in early processing stages and
selects the best-fit compression based an important statistical
quality metric (PSNR) for each data field. Their work, how-
ever, relies on the compression performance of SZ and ZFP,
so their compression result would never go beyond the best
choice from between SZ and ZFP.

III. BACKGROUND AND MOTIVATION

Compared with other lossy compression schemes, SZ usu-
ally achieves higher compression ratio [17], [32]. In general,
given a user-set point-wise relative error bound, SZ performs
the following five steps (also shown in Figure 1):
• Transforming all data points {Xi}ni=1 to {log(Xi)}ni=1

(denoted by {Yi}ni=1: converting a point-wise relative
error bound problem to absolute error bound problem.

• Applying best-fit prediction to the given dataset based
on user-set error bound: each floating-point data value is
predicted by its neighbor data points, and then mapped
to a quantization factor (integer value).

• Encoding the quantization factors by Huffman coding.
And compressing the unpredictable data points (i.e., the
data points that cannot be predicted in the second step)
by binary-representation analysis.

• Further applying a lossless compressor (such as GZip [28]
or Zstandard [27]) onto the compressed bytes generated
in the above steps.

We identify that it is feasible to perform parallelism op-
timization in the first step, because the logarithmic trans-
formation on one data point does not depend on any other
data points. However, the second stage (i.e., data prediction
and error quantization) is hard to be parallelized because of
data dependency. As shown in Figure 1, for each data point
{Yi} (after log transformation), we compute its predicted value
{Y ′i } and the quantization factor M.

More specifically, data is predicted with Lorenzo predic-
tor [33]. For a 2D dataset, the data point Yi,j is predicted
as Y ′i,j = Y ′i,j−1 + Y ′i−1,j - Y ′i−1,j−1; for a 3D dataset, the
data point Yi,j,k is predicted as Y ′i,j,k = Y ′i,j,k−1+ Y ′i,j−1,k -
Y ′i,j−1,k−1 + Y ′i−1,j,k - Y ′i−1,j,k−1 + Y ′i−1,j−1,k - Y ′i−1,j−1,k−1.
In other words, the data points will be processed in the row-
column order in 2D and layer-row-column order in 3D. In
fact, a quantization factor depends on a predicted value and
further depends on its previous predicted values. which is the
challenge of data dependency for parallelizing SZ compression
at the point-wise processing stage.

In order to realize parallel compression, a straight-forward
idea is dividing data into relatively small sub-blocks (such as
64 × 64 × 64) and then compressing these blocks separately.
However, compressing sub-blocks separately may cause sig-
nificantly degraded compression ratios. The key reason is that
many data points located on the sides of each sub-block cannot
be predicted very accurately because of fewer neighboring
data points, leading to a more disordered quantization factor
array for the following Huffman encoding algorithm to com-
press. Figure 2 demonstrates that the compression ratios are
degraded up to 30% under the independent-sub-block based
compression for cosmological NYX simulation dataset [17].
Thus, in this paper, we focus on exploring the feasibility of
parallelizing SZ compression in the logarithmic transformation
and the prediction & quantization stages without sacrificing
any compression ratio.

IV. DESIGN AND IMPLEMENTATION

In this section, we provide the design details about our
pipeline-like method that exploits parallelism in the point-by-
point processing stage on 2D datasets for SZ. For simplicity,
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we mainly discuss pallelizing SZ with 2D datasets as an
example. The methodologies for 3D and 4D datasets are
similar to the 2D case.

Observations: We find that boundary data points such as
Y1,0, Y2,0, which locate at the boundary of data fields, are
predicted in a different way from the other data points in the
prediction and quantization stage. For example, the data point
Yi,0 is predicted as Y ′i−1,0. This kind of data value prediction
can be exploited for parallel processing. For example, if SZ
is predicting the value of Yi,j , then the value of Yi,0∼Yi,j−1
must be predicted in advance, and Yi+1,0 can be predicted as
Y ′i,0, thus the condition for predicting Yi+1,1 is met (i.e., Y ′i+1,1

= Y ′i+1,0 + Y ′i,1 - Y ′i,0). After predicting Yi+1,1, the condition
for predicting Yi+1,2 is also met (i.e., Y ′i+1,2 = Y ′i+1,1 + Y ′i,2
- Y ′i,1). Similarly, all of Yi+1,0∼Yi+1,j−1 can be predicted in
order.

From the above discussion we know that if in the ith row,
Yi,j has been predicted, then in the (i + 1)th row, we can
predict Yi+1,0∼Yi+1,j−1 concurrently by using a pipeline-like
method. Figure 3 gives an example on this method on 2D
data. We use a thread T1 to process the first row. We use
another thread T2 to process the second row while controlling
the progress of the second row, ensuring that the progress
of the 1th row leads (i.e., runs ahead of) the 2nd row. We
use a similar way to control the third and subsequent rows.
Therefore, we can concurrently process different rows while
ensuring the prediction condition is always met.

Implementation: As shown in Figure 4, we design a
TaskDispatcher - Worker model to implement our idea. We
split the work in the point-by-point processing stage into
several tasks row by row (in 2D and layer by layer in 3D).
The TaskDispatcher is designed to distribute and schedule
the parallel tasks, as well as manage computing and memory
resources in our implementation.

Specifically, when a task is constructed, TaskDispatcher
provides all fields in the data structure Task (as shown below).
s t r u c t Task {

f l o a t * o r i D a t a ; / * t h e i n p u t da ta f o r c o m p r e s s i o n * /
i n t * f a c t o r A r r a y ; / * q u a n t i z a t i o n f a c t o r a r r a y * /
f l o a t * p r e v P r e d i c t e d ; / * p r e d i c t e d v a l u e s a r r a y f o r

t h e p r e v i o u s row * /
f l o a t * c u r P r e d i c t e d ; / * p r e d i c t v a l u e s a r r a y f o r

t h i s row * /
i n t s t a I n d e x ; / * s t a r t e d i n d e x o f t h e t a s k i n o r i D a t a * /
i n t endIndex ; / * ended i n d e x o f t h e t a s k i n o r i D a t a * /
i n t t a s k I n d e x ; / * t a s k i n d e x * /
i n t checkWidth ; / * r ed uc e l o c k c o n f l i c t by c h e c k i n g

t h e work ing p r o g r e s s o f t h e p r e v i o u s row * /
C o n c u r r e n t C o n t r o l l e r * p r e v C o n c u r r e n t C o n t r o l l e r ;
C o n c u r r e n t C o n t r o l l e r * c u r C o n c u r r e n t C o n t r o l l e r ;

}

We control the progress of neighboring rows with condi-
tional variables. So we need n+1 conditional variables for n
threads. The data structure ConcurrentController is designed
for the progress control, which is shown below.
S t r u c t C o n c u r r e n t C o n t r o l l e r{

p t h r e a d m u t e x t mutex ;
p t h r e a d c o n d t cond ;
u i n t 3 2 t pos ; / / p r o g r e s s i n a row ( l a y e r )

}

For each Worker, it gets a Task from TaskDispatcher, and
then processes a row (indicated as the Task) with the progress
control, which will be discussed in the next paragraph. Then
we conduct the point-by-point processing just like the conven-
tional SZ does.

Figure 5 provides a general workflow of the pipeline-like
method in SZ with the progress control. Assuming a thread
T1 is processing the ith row and the data point Yi,j has
been processed, then thread T1 needs to check the progress
of both the ith and (i − 1)th rows from the Concurrent-
Controller. In ConcurrentController, thread T1 can check the
progress of thread T2 in the (i − 1)th row. If Concurrent-
Controller.Pos is not larger than j+1, it means thread T2 has
not processed the data Yi−1,j+1, thus the data Yi,j+1 can
not be predicted, thus thread T1 is required to wait thread
T2 through ConcurrentController.ConditionVariable until it is
waken up by the thread T2. When the thread T2 processes
the data Yi−1,j+1, thread T2 should update its progress in
ConcurrentController.Pos, and wake up thread T1 through
ConcurrentController.ConditionVariable too. Finally, thread
T1 can proceed to process the data Yi,j+1. In this way, multiple
threads can concurrently process different rows in a pipeline
way.

Because the frequent progress-checking (when each data
point is processed) will cause serious lock conflicts, batch
checking is introduced to improve performance of our par-
allelizing SZ approach. In our implementation, we use a user-
specified parameter checkWidth to define the size of a batch.
As the method describe above, frequently progress checking
will cause serious lock conflicts. Therefore, a thread should
check progress less, and we let it check a batch at one time.
It means if a thread found that it is allowed to process the
next batch, it will continue to process the next checkWidth
data, otherwise to wait condition variable signal which shows
the next checkWidth data could be processed. In this way, we
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decrease the times of checking progress, and reduce the lock
conflicts when running our parallel SZ appraoach.

V. EVALUATION

In this section, we compare our approach (denoted by SZ M
and SZ M2 means 2 threads, SZ M4 means 4 threads, etc.)
with original SZ (denoted by SZ T). Compression rate, and the
break-down of compression time are provided and compared
in quantitative ways. In addition, SZ M needs a new config-
uration item named ‘check width’, which is the checkWidth
as defined and discussed in Section IV, and should be set
in the configuration file. A bigger checkWidth will lead to
less lock conflict, but maybe reduce the advantage bringing
from parallelism. Firstly we will do a serial of examination to
demonstrate the influence of checkWidth, and then according
to our observation, we will choose a recommended value for
checkWidth. Finally we will use the recommended value in
our final experiments for a better performance.

A. Experimental Setup

We conduct our tests on a server with four 2.4GHz Intel
Xeon E5-2640 v4 processors and totally 256GB memory.
The HPC datasets are from multiple domains, like NYX
cosmology simulation (3D), Hurricane ISABEL simulation
(3D) and CESM-ATM climate simulation (2D). The sizes of
these four datasets are 3.1GB, 1.9GB, and 2.0GB per snapshot
for each application, respectively. We respect data dimensions
during compression. For example, NYX cosmology simulation
dataset is 3D, so we conduct 3D compression on it.

Because our new parallelism framework will generate ex-
actly the same quantization code in the prediction and quan-
tization stage, thus the compression ratio and data fidelity of
our new approach will be totally the same as the original SZ
method and we no longer need to concern these two things.
Hence we mainly focus on compression rate in the evaluation:
here compression rate indicates the throughput of compression.
For the metric of compression rate, we run each test five times
to get the average values. Since each application involves many
fields, each in a data file, we use the aggregated file size to
divide by the total compression time cost to calculate the rate.

TABLE I
COMPRESSION RATIOS ON THREE TESTED DATASETS WITH GIVEN POINT

RELATIVE ERROR BOUND.
Datasets 1E-01 1E-02 1E-03 1E-04

NYX (3.1 GB) 14.20 9.00 5.25 3.40
Hurricane (1.9 GB) 18.71 11.01 7.07 4.67

CESM (2.0 GB) 82.89 34.01 15.63 8.13

In addition, SZ P needs a new configuration item named
checkWidth, which is the batch size, as discussed in Section
IV, and should be set in the configuration file. According to
our observation, using the very large or very small checkWidth
both will lead to low compression rate, and we will carefully
study and discuss the value of checkWidth firstly and use a
reasonable checkWidth in following experiments.

B. Influence of textbfcheckWidth

In this subsection, we compare different checkWidth on 6
fields in NYX dataset and try to demonstrate the influence
of checkWidth. Several settings of threads is involved and the
result is provided in Figure 6.

We can find that a smaller checkWidth will lead to larger
time cost, because different threads unlikely have exactly
the same processing speed, therefore as shown in Figure 5,
small checkWidth will cause frequent lock conflicts. And
when a lock conflict happens, there will be several system
calls produced, which is always a performance killer (i.e.,
performance degradation). To mitigate this effect, we can use a
larger checkWidth, which will give every thread a larger buffer
area to avoid the situation that the progress of one thread
is caught up by its next thread. The result of experiments
also supports this idea, and from Figure 6 we can find that
increasing the size of checkWidth really reduce the time cost
of the total task accordingly.

On the other hand, a larger checkWidth is not always better
for decreasing the time cost. We also can find that the large
checkWidth brings negative influence. Specifically, a larger
checkWidth will cause a larger difference of progress between
threads, which leads to more insignificance lock waiting and
could not make full use of computing source. Because of the
pipeline-like design, the large checkWidth will cause a quite
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Fig. 6. Time cost of running Parallel SZ as a function of the checkWidth on 6 fields in NYX dataset.
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Fig. 7. Break-down of the compression time for Parallel SZ (using relative error bound on NYX dataset).
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Fig. 8. Compression rate of Parallel SZ on given point relative error bound on three datasets.

large difference in progress between threads, which also can
lead to lock waiting. And the processing on first several Tasks
and the last several Tasks could not make full use of the
advantages of our parallelism design, and the time cost of
this situation can not be ignored.

Considering above factors (and also the results shown in
Figure 5) and balancing the effect on two sides, we can
configure checkWidth = 384, which also have some empirical
reason, for high compression rate. And next we compare our
approach (denoted by SZ Pa#, where # means the number of
threads) with original SZ (denoted by SZ T) [17] to finish
other experiments.

C. Time Cost in Each Stage

In this subsection, we compare break-down of compression
time cost of SZ Pa series and SZ T with an 1e-1 point-wise
relative error bound and show the time cost difference of every
part in different method. The situations of 2 threads, 4 threads
and 8 threads are listed and changes caused by threads number
is demonstrated.

Figure 7 presents the time cost of logarithmic transformation
and point-by-point processing stage significant decreases as
the number of threads increases. The time cost of logarithmic
transformation and point-by-point processing stage are the
main parts of the total time cost for original SZ, but consist
less than 50 percent of the total time cost for paralel SZ with
8 threads. As the number of threads increases, the time cost



these two parts accounts for a less and less proportion, and
the time cost of huffman encoding accounts for a bigger and
bigger proportion. We could find that for the point-by-point
processing stage, the time cost with 4 threads is about half of
the time cost with 2 threads, and the time cost with 8 threads is
about half of the time cost with 4 threads. And the same things
happen to the logarithmic transformation stage. Therefore we
can say that our method is able to linearly accelerate the two
parallelized stages in SZ.

D. Compression Rate

In this section we compare the compression rate between
the original SZ and our approach. Figure 8 shows that the
final compression rate of our approaches with different threads.
From Figure 7 we also can find that comparing with original
SZ and Parallel SZ with 2 threads, parallel SZ with 2 threads
do not have a very obvious improvement. The reasons are
two fold: 1© There are other compute-intensive tasks such
as Huffman encoding in SZ, which is not parallelized in our
current implementation. 2© As it is shown in Figure 7, time
cost of Huffman encoding becomes longer compared with
SZ T due to more cache misses in multi-thread environments.
For SZ Pa4 and SZ Pa8, the acceleration is about 2.0× in
most cases, because the time consumed on the two parallelized
stages is significantly reduced. But when we further increase
the number of threads, the bottlenecks are shifted to the
other stages. Those stages have not been parallelized in our
current implementation yet. Actually, parallelizing Huffman
tree construction is very challenging, we are still investigating
related techniques.

VI. CONCLUSION AND FUTURE WORK

In this work, we explore the feasibility of parallelizing SZ
lossy compressor on HPC datasets. Our optimization strategy
originates from an important observation that the logarithmic
transformation, Huffman decoding are the performance bottle-
necks in SZ. Specifically, we use a pipeline-like method and
exploit a series of strategies to parallelize SZ in its logarithmic
transformation and the prediction & quantization stages, which
keep the compression ratio the same as the original method.
The key findings about our performance evaluation with three
well-known application datasets are listed as follows:
• Compression Rate: Our parallel mechanism linearly ac-

celerates the compression rate in involved stages (i.e., the
stages of log transformation and point-by-point process-
ing) in most cases.

• Compression ratio: Our parallel mechanism achieving the
same compression ratio as the conventional SZ.

We have released our code at https://github.com/Borelse
t/SZ/tree/Parallelism to be shared with the HPC compressor
research community. As future work, we also plan to explore
the feasibility of parallelizing lossy compression schemes on
other stages such as Huffman tree construction and Huffman
encoding, which will further improve the speedup of our
method. In addition, we also focus on combination of random
access features and parallel mechanism.
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